Research on the Efficiency of Composite Beam Application in Multi-Storey Buildings

Author:

Kinderis Tomas,Daukšys MindaugasORCID,Mockienė Jūratė

Abstract

Over the past decade, several types of composite slim floor constructions have been used in multi-storey buildings in Lithuania. In order to study the efficiency of composite beam application in steel-framed multi-storey buildings, Thorbeam (A1), Deltabeam (A2), slim floor beam (A3) and asymmetric slim floor beam (A4) were chosen and evaluated according to nine assessment criteria (beam cost (K1), initial preparation on site (K2), installation time (K3), complexity of installation technology (K4), labour costs (K5), fire resistance (K6), load bearing capacity (K7), beam versatility (K8), and availability of beams (K9)). First, the significance of the rating criteria was selected and the order of the ranking criteria was obtained (K1˃K7˃K3˃K6˃K4˃K5˃K2˃K8˃K9) by means of a survey questionnaire. Second, the beams were ranked according to the points given by the questionnaire respondents as follows: 160 points were given to A2, 144 points to A1, 129 points to A4, and 111 points to A3. Deltabeam is considered to be the most rational alternative of the four beams compared. Calculations done using the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) analysis method revealed that composite beam A2 was the best slim floor structure alternative for an eight-storey high-rise commercial residential building frame, A1 ranked second, A4 ranked third, and A3 ranked fourth. In addition, the four composite beams were compared to a reinforced concrete beam (A5) according to three assessment criteria (beam cost including installation (C1), beam self-weight (C2) and fire resistance (C3)). Deltabeam was found to be efficient for use as a slim floor structure in a multi-story building due to having the lowest cost, including installation, and self-weight, and the highest fire resistance compared to other composite beams studied. Although Deltabeams are 1.4 times more expensive than reinforced concrete beams, including installation costs, they save about 2.5% of the building’s height compared to reinforced concrete beams.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3