How Well Do Three Tree Species Adapt to the Urban Environment in Guangdong-Hongkong-Macao Greater Bay Area of China Regarding Their Growth Patterns and Ecosystem Services?

Author:

Zhang ChiORCID,Zhao QingORCID,Tang Honghui,Qian Wanhui,Su Murong,Pan Lijun

Abstract

It is predicted that global change combined with urbanization will impact increasingly on the society and terrestrial ecosystem in the Guangdong-Hongkong-Macao Greater Bay Area of China (GBA). In this context, the cities in GBA began to plant a variety of urban trees since 2000 which are considered to play an important role in fixing carbon, improving air quality, reducing noise and providing other ecosystem services. However, data on the growth patterns and ecosystem services of the planted trees remains scarce, which hampers a comprehensive understanding of how well the planted trees adapt to the local urban environment. Therefore, we selected three widely planted tree species in Foshan, one of the core cities in GBA and investigated their tree growth and ecosystem services via a harvest campaign and soil analysis. With the same, fast tree growth as natural forests and the greatest above- and below-ground biomass among the three tree species, Ml (Mytilaria laosensis Lec.) showed a distinguished adaption to the local urban environment in terms of growth patterns, carbon fixation, stabilization against typhoon risk and water uptake capacity against potential drought risk in the future. Although Cf (Chinese fir) showed reduced diameter at breast height (DBH) and volume development, it significantly increased the total and available potassium in soils to improve the soil quality. The DBH growth of Sp (Slash pine) decreased between six and 12 years old while it recovered at the age of 12 years, probably suggesting its adaptation might take a longer time. Our results indicated that different trees had different growth patterns and ecosystem services after they were planted in cities. In a harsh urban environment under climate change, precise and comprehensive data on urban trees is necessary, helping to provide different perspectives for urban managers to select appropriate tree species and make policies.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3