Delta Radiomics Model Predicts Lesion-Level Responses to Tyrosine Kinase Inhibitors in Patients with Advanced Renal Cell Carcinoma: A Preliminary Result

Author:

Chen Yuntian1,Yuan Enyu1,Sun Guangxi2,Song Bin13,Yao Jin1

Affiliation:

1. Department of Radiology, West China Hospital, Sichuan University, Chengdu 610000, China

2. Department of Urology, West China Hospital, Sichuan University, Chengdu 610017, China

3. Department of Radiology, Sanya People’s Hospital, Sanya 572000, China

Abstract

Background: This study aimed to develop and internally validate computed tomography (CT)-based radiomic models to predict the lesion-level short-term response to tyrosine kinase inhibitors (TKIs) in patients with advanced renal cell carcinoma (RCC). Methods: This retrospective study included consecutive patients with RCC that were treated using TKIs as the first-line treatment. Radiomic features were extracted from noncontrast (NC) and arterial-phase (AP) CT images. The model performance was assessed using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA). Results: A total of 36 patients with 131 measurable lesions were enrolled (training: validation = 91: 40). The model with five delta features achieved the best discrimination capability with AUC values of 0.940 (95% CI, 0.890‒0.990) in the training cohort and 0.916 (95% CI, 0.828‒1.000) in the validation cohort. Only the delta model was well calibrated. The DCA showed that the net benefit of the delta model was greater than that of the other radiomic models, as well as that of the treat-all and treat-none criteria. Conclusions: Models based on CT delta radiomic features may help predict the short-term response to TKIs in patients with advanced RCC and aid in lesion stratification for potential treatments.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3