Artificial Intelligence (AI) versus POCUS Expert: A Validation Study of Three Automatic AI-Based, Real-Time, Hemodynamic Echocardiographic Assessment Tools

Author:

Gohar Eyal1,Herling Amit1,Mazuz Mor1,Tsaban Gal2ORCID,Gat Tomer2ORCID,Kobal Sergio2ORCID,Fuchs Lior2

Affiliation:

1. Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel

2. Soroka Medical Center, Beer Sheva 84101, Israel

Abstract

Background: Point Of Care Ultra-Sound (POCUS) is an operator dependent modality. POCUS examinations usually include ‘Eyeballing’ the inspected anatomical structure without conducting accurate measurements due to complexity and insufficient time. Automatic real time measuring tools can make accurate measurements fast and simple and dramatically increase examination reliability while saving the operator much time and effort. In this study we aim to assess three automatic tools which are integrated into the Venue™ device by GE: the automatic ejection fraction, velocity time integral, and inferior vena cava tools in comparison to the gold standard—an examination by a POCUS expert. Methods: A separate study was conducted for each of the three automatic tools. In each study, cardiac views were acquired by a POCUS expert. Relevant measurements were taken by both an auto tool and a POCUS expert who was blinded to the auto tool’s measurement. The agreement between the POCUS expert and the auto tool was measured for both the measurements and the image quality using a Cohen’s Kappa test. Results: All three tools have shown good agreement with the POCUS expert for high quality views: auto LVEF (0.498; p < 0.001), auto IVC (0.536; p = 0.009), and the auto VTI (0.655; p = 0.024). Auto VTI has also shown a good agreement for medium quality clips (0.914; p < 0.001). Image quality agreement was significant for the auto EF and auto IVC tools. Conclusions: The Venue™ show a high agreement with a POCUS expert for high quality views. This shows that auto tools can provide reliable real time assistance in performing accurate measurements, but do not reduce the need of a good image acquisition technique.

Funder

General Electric

Publisher

MDPI AG

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3