An Iteratively Extended Target Tracking by Using Decorrelated Unbiased Conversion of Nonlinear Measurements

Author:

Qin Yuemei1,Han Yang1,Li Shuying1,Li Jun1

Affiliation:

1. School of Automation, Xi’an University of Posts & Telecommunications, Xi’an 710121, China

Abstract

Extended target tracking (ETT) based on random matrices typically assumes that the measurement model is linear. However, nonlinear measurements (such as range and azimuth) depending on locations of a series of unknown scattering centers always exist in many practical tracking applications. To address this issue, this paper proposes an iteratively extended target tracking based on random matrices by using decorrelated unbiased conversion of nonlinear measurements (ETT-IDUCM). First, we utilize a decorrelated unbiased converted measurement (DUCM) method to convert nonlinear measurements depending on unknown scatters of target extent in polar coordinates into the ones in Cartesian coordinates with equivalent measurement noise covariances. Subsequently, a novel method, combining iteratively extended Kalman filter (IEKF) updates with variational Bayesian (VB) cycles is developed for precise estimation of the target’s kinematic state and extension. This method leverages the synergy between external IEKF iterations, which use the estimated state as a new prediction and input for DUCM, and internal VB iterations, which realize a closed-form approximation of the joint posterior probability. This approach progressively enhances estimation accuracy. Simulation results demonstrate the ETT-IDUCM algorithm’s superior precision in estimating the target’s kinematic state and extension compared to existing methods.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

MDPI AG

Reference28 articles.

1. Bar-Shalom, Y., Li, X.R., and Kirubarajan, T. (2004). Estimation with Applications to Tracking and Navigation: Theory Algorithms and Software, John Wiley & Sons.

2. Model parameter adaption-based multi-model algorithm for extended object tracking using a random matrix;Li;Sensors,2014

3. Bayesian approach to extended object and cluster tracking using random matrices;Koch;IEEE Trans. Aerosp. Electron. Syst.,2008

4. Waxman, M.J., and Drummond, O.E. (2004, January 25). A Bibliography of Cluster (Group) Tracking. Proceedings of the Signal and Data Processing Small Targets, Orlando, FL, USA.

5. Cao, W., and Li, Q. (2022). Extended Object Tracking with Embedded Classification. Sensors, 22.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3