Sound Can Help Us See More Clearly

Author:

Li YongshengORCID,Tu Tengfei,Zhang Hua,Li JishuaiORCID,Jin Zhengping,Wen Qiaoyan

Abstract

In the field of video action classification, existing network frameworks often only use video frames as input. When the object involved in the action does not appear in a prominent position in the video frame, the network cannot accurately classify it. We introduce a new neural network structure that uses sound to assist in processing such tasks. The original sound wave is converted into sound texture as the input of the network. Furthermore, in order to use the rich modal information (images and sound) in the video, we designed and used a two-stream frame. In this work, we assume that sound data can be used to solve motion recognition tasks. To demonstrate this, we designed a neural network based on sound texture to perform video action classification tasks. Then, we fuse this network with a deep neural network that uses continuous video frames to construct a two-stream network, which is called A-IN. Finally, in the kinetics dataset, we use our proposed A-IN to compare with the image-only network. The experimental results show that the recognition accuracy of the two-stream neural network model with uesed sound data features is increased by 7.6% compared with the network using video frames. This proves that the rational use of the rich information in the video can improve the classification effect.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference55 articles.

1. Soundnet: Learning sound representations from unlabeled video;Aytar;Adv. Neural Inf. Process. Syst.,2016

2. See, hear, and read: Deep aligned representations;Aytar;arXiv,2017

3. Learning a text-video embedding from incomplete and heterogeneous data;Miech;arXiv,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3