Separation and Removal of Radionuclide Cesium from Water by Biodegradable Magnetic Prussian Blue Nanospheres

Author:

Feng Shanshan,Ni Jie,Cao Xun,Gao Jingshuai,Yang Lu,Jia Wenhao,Chen Feng,Feng Sheng,Zhang Yao,Ma Fang

Abstract

As the main component of radioactive wastewater, the cesium ion has seriously endangered the environment and human health. Prussian blue nanoparticles (PB NPs) are used as adsorbents for the purification of cesium-containing wastewater because of their ability to selectively adsorb cesium ions. In this work, novel magnetic Prussian blue nanospheres (MPBNs) were developed from polylactic acid nanospheres as a carrier, loaded with Fe3O4 nanoparticles (Fe3O4 NPs) inside and PB NPs outside for the removal of cesium ions with the help of magnetic separation. Meanwhile, the effects on the adsorption efficiency of MPBNs, such as pH, time, temperature and initial concentration of cesium ion solution, were studied. The adsorption isotherms, kinetic models and adsorption thermodynamics were investigated to research the absorption mechanism. The results showed that MPBNs were spherical with a rough surface, and their particle size, iron content and saturation magnetization were 268.2 ± 1.4 nm, 40.01% and 41.71 emu/g, which can be recovered by magnetic separation. At 293 K, MPBNs could reduce the cesium ion solution from 40 mg/L to 4.8 mg/L, and its cesium ion removal rate and adsorption capacity were 82.46% and 16.49 mg/g, respectively. The optimum pH of MPBNs for cesium ion adsorption was 5~9, the adsorption equilibrium time was 60 min, and the maximum adsorption capacity was 17.03 mg/g. In addition, MPBNs were separated rapidly by an external magnetic field, and the adsorption process was an endothermic reaction. The adsorption isotherm and kinetics of MPBNs were in accordance with the Freundlich model and quasi-second-order fitting model, respectively, and the adsorption process of MPBNs was controlled by the diffusion step in particles. Notably, these MPBNs could be effectively separated from water by a magnetic field, facilitating engineering applications in cesium-containing wastewater.

Funder

Changzhou Science and Technology Bureau

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3