Numerical Investigation of Flow Characteristics for Gas–Liquid Two–Phase Flow in Coiled Tubing

Author:

Sun Shihui,Liu Jiahao,Zhang Wan,Yi Tinglong

Abstract

Coiled tubing (CT) is widely used for horizontal well fracturing, squeeze cementing, and sand and solid washing in the oil and gas industry. During CT operation, a gas–liquid two-phase flow state appears in the tubing. Due to the secondary flow, this state produces a more extensive flow-friction pressure loss, which limits its application. It is crucial to understand the gas–liquid flow behavior in a spiral tube for frictional pressure drop predictions in the CT technique. In this study, we numerically investigated the velocity distribution and phase distribution of a gas–liquid flow in CT. A comparison of experimental data and simulated results show that the maximum average error is 2.14%, verifying the accuracy of the numerical model. The gas and liquid velocities decrease first and then rise along the axial direction due to the effect of gravity. Due to the difference in the gas and liquid viscosity, i.e., the flow resistance of the gas and liquid is different, the gas–liquid slip velocity ratio is always greater than 1. The liquid velocity exhibits a D-shaped step distribution at different cross-sections of spiral tubing. The secondary-flow intensity, caused by radial velocity, increases along the tubing. Due to the secondary-flow effect, the zone of the maximum cross-section velocity is off-center and closer to the outside of the tube. However, under the combined action of centrifugal force and the density difference between gas and liquid, the variation in the gas void fraction along the tubing is relatively stable. These research results are helpful in understanding the complex flow behavior of gas–liquid two-phase flow in CT.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3