Sorption of Selenium(IV) and Selenium(VI) onto Iron Oxide/Hydroxide-Based Carbon Materials: Activated Carbon and Carbon Foam

Author:

López-Toyos Lucia1,Rodríguez Elena1ORCID,García Roberto1ORCID,Martínez-Tarazona Maria Rosa1,López-Antón Maria Antonia1

Affiliation:

1. Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, C/Francisco Pintado Fe, 26, 33011 Oviedo, Spain

Abstract

Selenium pollution in water is a worldwide issue. Se(IV) and Se(VI) are mainly found in contaminated water due to their high solubility and mobility; their presence poses a serious risk as they can severely harm human health. Although iron oxide and hydroxide nanoparticles can be efficient candidates for the removal of selenium oxyanions due to their high adsorption capacity, the role of each iron species has not been fully elucidated. Furthermore, iron species are often found to be less effective for Se(VI) than Se(IV). The challenge and novelty of this study was to develop a carbon material impregnated with different iron phases, including oxides (magnetite/hematite) and hydroxides (goethite/lepidocrocite) capable of removing both Se(IV) and Se(VI). Since the phase and morphology of the iron nanoparticles play a significant role in Se adsorption, the study evaluated both characteristics by modifying the impregnation method, which is based on an oxidative hydrolysis with FeSO4 7H2O and CH3COONa, and the type of carbonaceous support (activated carbon or sucrose-based carbon foam). Impregnated activated carbons provide better removal efficiencies (70–80%) than carbon foams (<40%), due to their high surface areas and point zero charges. These results show that the adsorption of Se(VI) is more favorable on magnetic oxides (78%) and hydroxides (71%) than in hematite (<40%). In addition, the activated carbon decorated with magnetite showed a high adsorption capacity for both selenium species, even in alkaline conditions, when the sorbent surface is negatively charged. A mechanism based on the adsorption of inner-sphere complexes was suggested for Se(IV) immobilization, whereas Se(VI) removal occurred through the formation of outer-sphere complexes and redox processes.

Funder

Ministerio de Ciencia e Innovación del Gobierno de España

Gobierno del Principado de Asturias

Programa Investigo, Plan de Recuperación, Transformación y Resiliencia, Ministry of Labor and Social Economy

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3