Reliability Dynamic Analysis by Fault Trees and Binary Decision Diagrams

Author:

García Márquez Fausto PedroORCID,Segovia Ramírez Isaac,Mohammadi-Ivatloo BehnamORCID,Marugán Alberto Pliego

Abstract

New wind turbines are becoming more complex and reliability analysis of them rising in complexity. The systems are composed of many components. Fault tree is used as an useful tool to analyze these interrelations and provide a scheme of the wind turbine, to get a quick overview of the behavior of the system under certain conditions of the components. However, it is complicated and in some cases not possible, to identify the conditions that would generate a wind turbine failure. A quantitative and qualitative reliability analysis of the wind turbine is proposed in this study. Binary decision diagrams are employed as a suitable and operational method to facilitate this analysis and to get an analytical expression by the Boolean functions. The size of the binary decision diagram, i.e., the computational cost for solving the problem, has an important dependence on the order of the components or events considered. Different heuristic ranking methods are used to find an optimal order or one closed, and to validate the results: AND, level, top-down-left-right, deep-first search and breadth-first-search. Birnbaum and criticality importance measures are proposed to evaluate the relevance of each component. This analysis leads to classify the events according to their importance with respect to the probability of the top event. This analysis provides the basis for making medium and long-term maintenance strategies.

Publisher

MDPI AG

Subject

Information Systems

Reference76 articles.

1. Future maintenance management in renewable energies;Muñoz,2018

2. Global Wind Report;Council,2019

3. A Survey on Wind Turbine Condition Monitoring and Fault Diagnosis—Part I: Components and Subsystems

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3