Habitat Analysis of Endangered Korean Long-Tailed Goral (Naemorhedus caudatus raddeanus) with Weather Forecasting Model

Author:

Lee Sanghun,Kim Baek-Jun,Bhang Kon JoonORCID

Abstract

Climate simulation is often used for evaluation of the sustainability of a species in global scale but not applicable for our study because the global data is too coarse to be used in small and fragmented habitat areas. We examined a weather forecasting model for the habitat analysis of the endangered species of the Korean long-tailed goral (Naemorhedus caudatus raddeanus). The weather research forecasting (WRF) model is implemented to downscale global climate data for a small fragmented habitat of the goral. The coordinates of goral fecal samples were collected during winter 2005 and summer 2006 using GPS and the goral habitat was set with the elevations of fecal samples mostly found. The atmospheric parameters of the habitat were then simulated by WRF and defined as the atmospheric signature of the goral suitable habitat. A series of temperature changes was then projected for the period from 2010s to 2090s to evaluate the change of the habitat for summer (June) and winter (December) seasons. As a result, the suitable habitat of the Korean long-tailed goral would be significantly declined and almost disappeared in the 2070s for summer or 2050s for winter under the climate scenarios of RCP 8.5 by IPCC.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference48 articles.

1. Consequences of changing biodiversity

2. Clouded futures

3. Extinction risk from climate change

4. How Does Climate Change Affect Biodiversity?

5. Endangered Species, Threatened Convention: The Past, Present and Future of CITES;Hutton,2000

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3