Laser Powder-Bed Fusion as an Alloy Development Tool: Parameter Selection for In-Situ Alloying Using Elemental Powders

Author:

Shoji Aota LeonardoORCID,Bajaj PriyanshuORCID,Zschommler Sandim Hugo RicardoORCID,Aimé Jägle EricORCID

Abstract

The design of advanced alloys specifically tailored to additive manufacturing processes is a research field that is attracting ever-increasing attention. Laser powder-bed fusion (LPBF) commonly uses pre-alloyed, fine powders (diameter usually 15–45 µm) to produce fully dense metallic parts. The availability of such fine, pre-alloyed powders reduces the iteration speed of alloy development for LPBF and renders it quite costly. Here, we overcome these drawbacks by performing in-situ alloying in LPBF starting with pure elemental powder mixtures avoiding the use of costly pre-alloyed powders. Pure iron, chromium, and nickel powder mixtures were used to perform in-situ alloying to manufacture 304 L stainless steel cube-shaped samples. Process parameters including scanning speed, laser power, beam diameter, and layer thickness were varied aiming at obtaining a chemically homogeneous alloy. The scientific questions focused on in this work are: which process parameters are required for producing such samples (in part already known in the state of the art), and why are these parameters conducive to homogeneity? Analytical modelling of the melt pool geometry and temperature field suggests that the residence time in the liquid state is the most important parameter controlling the chemical homogeneity of the parts. Results show that in-situ alloying can be successfully employed to enable faster and cost-efficient rapid alloy development.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3