Abstract
Material property variation in non-homogeneous internally pressurized thick-walled cylinders is investigated within the context of dynamic programming theory. The material is assumed to be linear, elastic, isotropic, and functionally graded in the radial direction. Based on the plane stress hypothesis, a state space formulation is given and the optimal control problem is stated and solved by means of Pontryagin’s Principle for different objective functionals. Optimal Young’s modulus distribution is found to be piecewise linear along the radial domain. A brief digression on the possible existence of switching points is addressed. Finally, a numerical example is performed within a special class of derived optimal solutions, showing promising results in terms of equivalent stress reduction with respect to the most used variations in literature.
Subject
General Materials Science
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献