Enhanced Morphology-Dependent Tensile Property and Breakdown Strength of Impact Polypropylene Copolymer for Cable Insulation

Author:

Yang Kai,Liu Yun,Yan Zhimin,Tian Ye,Liu Yitao,Jing Zhenghong,Li Jianying,Li Shengtao

Abstract

The decrease in electrical properties caused by the toughening of polypropylene (PP) is a difficult problem for the modification of PP used for cable insulation. In this research, an isotactic PP, a cross-linked polyethylene (XLPE) and two impact PP copolymers (IPCs) with an ethylene–propylene rubber phase content of 15 and 30% were prepared to assess the possibility of IPCs to be used as cable insulating material. The tensile properties and breakdown strength were evaluated, meanwhile, the rubber phase content dependence of the crystalline structure, morphology and trap distribution were also investigated. Results show that IPCs with a 15% rubber phase content (IPC15) can achieve the simultaneous improvement of elongation at break and breakdown strength compared with isotactic PP, which can be attributed to the special crystalline structure. According to the results of differential scanning calorimetry (DSC) and FTIR, it is proposed that the lamella thickness of IPC15 is maximal and some ethylene segments exist in PP crystals of IPC15 as crystalline structure defects, which is responsible for this enhanced breakdown strength. The morphology results reveal that rubber microspheres are found to coexist with spherulites, which can promote the relative sliding among lamellas under external force and further results in the increase in the elongation at break.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3