Effect of Non-Thermal Atmospheric Pressure Plasma (NTP) and Zirconia Primer Treatment on Shear Bond Strength between Y-TZP and Resin Cement

Author:

Ahn Jong-Ju,Kim Dae-Sung,Bae Eun-BinORCID,Kim Gyoo-Cheon,Jeong Chang-Mo,Huh Jung-Bo,Lee So-Hyoun

Abstract

The purpose of this study was to investigate the effect of non-thermal atmospheric pressure plasma (NTP) treatment on the sandblasting of mechanical method and zirconia primer of chemical method used to increase the bond strength between zirconia and resin cement. In this study, Y-TZP was divided into 4 groups according to the surface treatment methods as follows: Zirconia primer (Pr), NTP + Zirconia primer (NTP + Pr), Sandblasting + Zirconia primer (Sb + Pr), Sandblasting + NTP + Zirconia primer (Sb + NTP + Pr). Then, two types of resin cement (G-CEM LinkAce and Rely X-U200) were used to measure the shear bond strength (SBS) and they were divided into non-thermal cycling group and thermal cycling group for aging effect. Statistical analyses were performed using the Kruskal-Wallis test and Mann-Whitney U test. The result of the surface energy (SE), there was no significant difference among the groups (p > 0.05). As a result of the SBS test, the Sb + Pr group had a significantly higher SBS value than the other groups regardless of the resin cement type (p < 0.05), and the decrease rate after thermal cycling treatment was the lowest. On the other hand, the NTP + Pr group showed significantly lower SBS values than the other groups except for the case of using Rely X-U200 (p < 0.05), and the reduction rate after thermal cycling was the highest. The Sb + NTP + Pr group did not differ significantly from the Pr group (p > 0.05). Within the limitations of two successive studies, treatment with NTP after sandblasting used for mechanical bond strength showed a positive effect on initial SBS. However, when NTP was treated before the zirconia primer used for the chemical bond strength, it showed a negative effect on SBS compared to other treatment methods, which was noticeable after the thermal cycling treatment.

Funder

Busan national university

National Research Foundation of Korea

Publisher

MDPI AG

Subject

General Materials Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3