Improving Spatial Resolution of Multispectral Rock Outcrop Images Using RGB Data and Artificial Neural Networks

Author:

Marques Junior AdemirORCID,de Souza Eniuce MenezesORCID,Müller MarianneORCID,Brum DiegoORCID,Zanotta Daniel CapellaORCID,Horota Rafael KenjiORCID,Kupssinskü Lucas SilveiraORCID,Veronez Maurício RobertoORCID,Gonzaga LuizORCID,Cazarin Caroline Lessio

Abstract

Spectral information provided by multispectral and hyperspectral sensors has a great impact on remote sensing studies, easing the identification of carbonate outcrops that contribute to a better understanding of petroleum reservoirs. Sensors aboard satellites like Landsat series, which have data freely available usually lack the spatial resolution that suborbital sensors have. Many techniques have been developed to improve spatial resolution through data fusion. However, most of them have serious limitations regarding application and scale. Recently Super-Resolution (SR) convolution neural networks have been tested with encouraging results. However, they require large datasets, more time and computational power for training. To overcome these limitations, this work aims to increase the spatial resolution of multispectral bands from the Landsat satellite database using a modified artificial neural network that uses pixel kernels of a single spatial high-resolution RGB image from Google Earth as input. The methodology was validated with a common dataset of indoor images as well as a specific area of Landsat 8. Different downsized scale inputs were used for training where the validation used the ground truth of the original size images, obtaining comparable results to the recent works. With the method validated, we generated high spatial resolution spectral bands based on RGB images from Google Earth on a carbonated outcrop area, which were then properly classified according to the soil spectral responses making use of the advantage of a higher spatial resolution dataset.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3