Unsupervised Outlier Detection in IOT Using Deep VAE

Author:

Gouda WalaaORCID,Tahir SidraORCID,Alanazi SaadORCID,Almufareh MaramORCID,Alwakid Ghadah

Abstract

The Internet of Things (IoT) refers to a system of interconnected, internet-connected devices and sensors that allows the collection and dissemination of data. The data provided by these sensors may include outliers or exhibit anomalous behavior as a result of attack activities or device failure, for example. However, the majority of existing outlier detection algorithms rely on labeled data, which is frequently hard to obtain in the IoT domain. More crucially, the IoT’s data volume is continually increasing, necessitating the requirement for predicting and identifying the classes of future data. In this study, we propose an unsupervised technique based on a deep Variational Auto-Encoder (VAE) to detect outliers in IoT data by leveraging the characteristic of the reconstruction ability and the low-dimensional representation of the input data’s latent variables of the VAE. First, the input data are standardized. Then, we employ the VAE to find a reconstructed output representation from the low-dimensional representation of the latent variables of the input data. Finally, the reconstruction error between the original observation and the reconstructed one is used as an outlier score. Our model was trained only using normal data with no labels in an unsupervised manner and evaluated using Statlog (Landsat Satellite) dataset. The unsupervised model achieved promising and comparable results with the state-of-the-art outlier detection schemes with a precision of ≈90% and an F1 score of 79%.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3