Effects of Water and Nitrogen Coupling on Growth, Yield and Quality of Greenhouse Tomato

Author:

Yue Wenjun,Liu Linsong,Chen Si,Bai Yu,Li Ningyu

Abstract

Irrigation water is essential for greenhouse plants because it is the only water source in the greenhouse. In addition, escalating water costs and expensive fertilizers have raised concerns about adopting advanced technology to improve water and nitrogen utilization efficiency. This study aimed to explore the effects of different water and nitrogen application rates on yield, fruit quality, and water and nitrogen utilization efficiency in southeast China. Plants were irrigated every 7–10 days at different proportions of crop evapotranspiration (ETc) based on the modified Penman–Monteith formula (ET0). The crop coefficient (Kc) was adopted as 0.6, 1.15, 1.15 and 0.9 during the seedling stage, flower stage, the mid-season stage and the end of the season stage, respectively. There were three water levels—0.75 ETc (W1), 1.0 ETc (W2), 1.25 ETc (W3)—and four nitrogen levels—120 (N1), 220 (N2), 320 (N3), and 420 kg N hm−2 (N4)—and a total of 12 treatments, with the application completely randomized by using block design in the experiment. Tomato yield was improved by nitrogen supply. However, nitrogen application had a negative effect on tomato yield when the nitrogen level was applied above 320 N ha−1. The maximum water use efficiency (WUE) value of 30.5 kg m−3 was observed at W2N3, and the maximum nitrogen use efficiency (NUE) value of 684.4 kg kg−1 N was observed at W1 treatment with N1. The net photosynthetic rate of tomato leaves could be increased by reasonably increasing water and nitrogen application. The dry biomass increased with the amount of water and nitrogen in the range of (0.75–1.0) ETc and (120–320) kg ha−1. The best values of tomato quality parameters (Vc, Lycopene, soluble protein et al.) were observed at W2N3. The irrigation level of 1.0 ETc and nitrogen level of 320 N ha−1 was recommended as the best combination of water and nitrogen for greenhouse tomato cultivation in the experimental areas.

Funder

the key Laboratory for Technology in Rural Water Management of Zhejiang Province

the Basic Public Welfare Technology Research Program of Zhejiang province

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference44 articles.

1. Optimizing Irrigation Water and Nitrogen Fertilizer Levels for Tomato Production;Open Agric. J.,2019

2. Preharvest and postharvest factors affecting the quality and shelf life of harvested tomatoes. A mini review;Int. J. Agron.,2015

3. Irrigation with saline water improves carotenoids content and antioxidant activity of tomato;J. Hortic. Sci. Biotechnol.,2001

4. Principal component and cluster analysis as a tool in the assessment of tomato hybrids and cultivars;Int. J. Agron.,2011

5. Travel advice on the road’ to carotenoids in plants;Plant Sci.,2010

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3