An Improved Combination Model for the Multi-Scale Prediction of Slope Deformation

Author:

Li Xiangyu,Lei Tianjie,Qin Jing,Wang Jiabao,Wang Weiwei,Chen Dongpan,Qian Guansheng,Lu JingxuanORCID

Abstract

Slope collapse is one of the most severe natural disaster threats, and accurately predicting slope deformation is important to avoid the occurrence of disaster. However, the single prediction model has some problems, such as poor stability, lower accuracy and data fluctuation. Obviously, it is necessary to establish a combination model to accurately predict slope deformation. Here, we used the GFW-Fisher optimal segmentation method to establish a multi-scale prediction combination model. Our results indicated that the determination coefficient of linear combination model, weighted geometric average model, and weighted harmonic average model was the highest at the surface spatial scale with a large scale, and their determination coefficients were 0.95, 0.95, and 0.96, respectively. Meanwhile, RMSE, MAE and Relative error were used as indicators to evaluate accuracy and the evaluation accuracy of the weighted harmonic average model was the most obvious, with an accuracy of 5.57%, 3.11% and 3.98%, respectively. Therefore, it is necessary to choose the weighted harmonic average model at the surface scale with a large scale as the slope deformation prediction combination model. Meanwhile, our results effectively solve the problems of the prediction results caused by the single model and data fluctuation and provide a reference for the prediction of slope deformation.

Funder

Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3