On a Key-Based Secured Audio Data-Hiding Scheme Robust to Volumetric Attack with Entropy-Based Embedding

Author:

Garcia-Hernandez Jose JuanORCID

Abstract

In the data-hiding field, it is mandatory that proposed schemes are key-secured as required by the Kerckhoff’s principle. Moreover, perceptual transparency must be guaranteed. On the other hand, volumetric attack is of special interest in audio data-hiding systems. This study proposes a data-hiding scheme for audio signals, which is both key-based secured and highly perceptually transparent and, thus, robust to the volumetric attack. A modification to a state-of-the-art data-hiding algorithm is proposed to achieve key-based security. Embedding is carried out in the integer discrete cosine transform (DCT) domain; selected samples for embedding are determined by the entropy of the Integer DCT coefficients. Of the two key-based improvements proposed, the multiplicative strategy gives better results, guaranteeing the worst bit error rate when an incorrect key is used. Additionally, the perceptual transparency of the proposed scheme is higher, compared to the state-of-the-art schemes using similar embedding strategies.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3