Study on Sulfur Transfer Behavior during Refining of Rejected Electrolytic Manganese Metal

Author:

Wang ,Liu ,Wang ,Cao ,Li

Abstract

A slag treatment method was proposed to recycle rejected electrolytic manganese metal. To improve the sulfur removal ratio, computational fluid dynamics and experimental studies of the sulfur transfer behavior during the refining process were carried out. Experiments of slag-metal reaction for desulfurization were carried out using an electric resistance furnace at temperatures ranging from 1773 K to 1923 K. A transient three-dimensional coupled numerical model was established to represent the three-phase flow, heat and mass transfer in the experiment. The desulfurization rate was described by a metallurgical kinetics module, which was related to the slag composition, the interfacial tension coefficient, the flow and the temperature of the melt. The predicted sulfur content agreed reasonably well with the measured data. The temperature of the fluids at the outer side of the crucible was higher than that at the center, resulting in a larger sulfur partition ratio and a more vigorous flow. The sulfur transfer rate was higher at the outer edge of the molten slag–molten manganese interface. The sulfur removal ratio increased from 51.4% to 85.1% with a change in heating temperature from 1773 K to 1873 K, and slightly dropped to 83.3% when the heating temperature increased to 1923 K. The heating temperature of 1873 K is the optimal choice for recycling in the present work.

Funder

National Natural Science Foundation of China

Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3