Study on Microstructure and Properties of a New Warm-Stamped Niobium-Alloyed Steel

Author:

Tian Peng,Liang Wen,Cui Zhennan,Zhu Guoming,Kang Yonglin,Li Baoshun,Lin Li,Liu Rendong

Abstract

The warm stamping technology is a promising technology to meet the needs of car weight reduction and energy conservation. In order to compare with the mechanical properties of the traditional hot-stamped boron-alloyed steel 22MnB5, a new warm-stamped niobium-alloyed steel 22Mn3SiNb was designed and tested. The optimal heating parameters for warm forming process were explored through mechanical tests, and the process of their microstructure evolution was investigated by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD), etc. The experimental results indicate that the optimal heating parameters for the niobium-alloyed steel 22Mn3SiNb are a heating temperature of 800 °C and a soaking time of 5 min. Compared to the hot-stamped boron-alloyed steel 22MnB5 under their respective optimal heating parameters, the properties and microstructure characteristics of 22Mn3SiNb are greatly improved, and nearly no decarburized layer is found on the surface of the niobium-alloyed steel 22Mn3SiNb. In addition, the addition of Nb produces the effects of grain refinement and precipitation strengthening due to the introduction of plenty of nano-precipitated particles and dislocations. In the end, it can be predicted that the new warm-stamped niobium-alloyed steel will replace the conventional hot-stamped boron-alloyed steel.

Funder

University of Science and Technology Beijing

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference32 articles.

1. Theory and Technology of Processing and Forming for Advanced Automobile Steel Sheets;Kang,2009

2. Hydrogen Trapping in Some Automotive Martensitic Advanced High-Strength Steels

3. Development of advanced compact steel process and deep working technology for high-strength-ductility auto-parts;Gan;Steel Roll.,2015

4. Advanced hot forming treatment AHFT of deep working technology for ultra- high-strength-ductility auto-parts;Li;Steel Roll.,2015

5. A review on hot stamping

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3