Effect of Magnesium Matrix Grain Refinement Induced by Plastic Deformation in a Composite with Short Carbon Fibers

Author:

Olszówka-Myalska AnitaORCID,Kuc Dariusz,Myalski Jerzy,Chrapoński Jacek

Abstract

The magnesium matrix composite reinforced with 3 vol. % of short carbon fibers (Csf), fabricated, under industrial conditions, by the stir casting method, was applied to obtain composite bars by two extrusion methods: the novel method of cold severe plastic deformation with a forward-backward rotating die (KoBo) and conventional extrusion at 400 °C. The effect of Mg(α) grain refining, as well as fibers behavior and phenomenon at the fiber-matrix interface, was examined by optical microscopy, scanning electron microscopy with energy dispersive spectroscopy and scanning-transmission electron microscopy methods. The Mg(α) grain quantitative characteristics revealed a decrease of the equivalent diameter from 219 ± 76 μm (as-cast) to 24 ± 10 μm and 0.89 ± 0.35 μm (the hot-extruded and KoBo-processed, respectively). In addition, due to the KoBo application, except for the Csf orientation that was parallel to the extrusion direction, an effect of fibers fragmentation on the length of few Csf diameters was detected. No significant changes in the Csf-matrix interface (besides those between new carbon surfaces) formed by fibers fragmentation, and the matrix created by extrusion were detected. A comparison of the mechanical properties of the Mg-Csf composite showed that the KoBo method ensured a spectacular increase in strength and plasticity.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3