Abstract
Selective laser surface melting, which brings together the bionic theory and the laser process, is an effective way to enhance the thermal fatigue behavior of materials. In this study, in order to examine the relationship between the mechanical properties and thermal fatigue behavior of materials processed by selective laser surface melting, the tensile properties at room temperature and elevated temperature of treated specimens and untreated specimens after different numbers of thermal fatigue cycles were investigated and compared. Moreover, the microstructure evolution and the microhardness of the laser-affected zone were investigated after different numbers of thermal fatigue cycles. The results show that microhardness of the laser-melted zone gradually decreases with an increasing number of thermal fatigue cycles; the number of thermal fatigue cycles has little effect on the grain size in the laser-melted zone, and the percentage of low-angle grain boundaries decreases with an increasing number of thermal fatigue cycles. The strength of specimens gradually decreases, whereas the fracture elongation gradually increases with an increasing number of thermal fatigue cycles at room temperature and elevated temperature. In addition, the stress distribution on the specimen surface during tensile test was investigated using the finite element method, and the results indicate that the stress transfer exists between the laser-affected zone and the untreated zone.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Liaoning Province
PhD research startup fund of Liaoning Technical University
Subject
General Materials Science,Metals and Alloys
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献