Deposits in Gas-fired Rotary Kiln for Limonite Magnetization-Reduction Roasting: Characteristics and Formation Mechanism

Author:

Fu XianghuiORCID,Chen Zezong,Xu Xiangyang,He Lihua,Song Yunfeng

Abstract

The formation mechanism of deposits in commercial gas-fired magnetization-reduction roasting rotary kiln was studied. The deposits ring adhered on the kiln wall based on the bonding of low melting point eutectic liquid phase, and the deposit adhered on the air duct head by impact deposition. The chemical composition and microstructure of the deposits sampled at different locations varied slightly. Besides a small amount of quartz and limonite, main phases in the deposits are fayalite, glass phase and magnetite. The formation of the deposits can be attributed to the derivation of low melting point eutectic of fine limonite and coal ash, and the solid state reaction between them. Coal ash, originated from the reduction coal, combining together with fine limonite particles, results in the accumulation of deposits on the kiln wall and air duct. Fayalite, the binder phase, was a key factor for deposit formation. The residual carbon in limonite may cause an over-reduction of limonite and produce FeO. Amid the roasting process, SiO2, originated from limonite and coal ash, may combine with FeO and reduce the liquefaction temperature, therewith liquid phase generates at high temperature zone, which can significantly promote the growth of deposits.

Funder

The 12th five-year National Key Technology Research and Development Program of the Science and Technology of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3