Abstract
Tailoring the morphology and distribution of the Al2Ca second phase is important for improving mechanical properties of Al2Ca-containing Mg-Al-Ca based alloys. This work employed the industrial-scale multi-pass rotary-die equal channel angular pressing (RD-ECAP) on an as-cast Mg-3.7Al-1.8Ca-0.4Mn (wt %) alloy and investigated its microstructure evolution and mechanical properties under three different processing parameters. The obtained results showed that RD-ECAP was effective for refining the microstructure and breaking the network-shaped Al2Ca phase. With the increase of the ECAP number and decrease of the processing temperature, the average sizes of Al2Ca particles decreased obviously, and the dispersion of the Al2Ca phase became more uniform. In addition, more ECAP passes and lower processing temperature resulted in finer α-Mg grains. Tensile test results indicated that the 573 K-12p alloy with the finest and most dispersed Al2Ca particles exhibited superior mechanical properties with tensile yield strength of 304 MPa, ultimate tensile strength of 354 MPa and elongation of 10.3%. The improved comprehensive mechanical performance could be attributed to refined DRX grains, nano-sized Mg17Al12 precipitates and dispersed Al2Ca particles, where the refined and dispersed Al2Ca particles played a more dominant role in strengthening the alloys.
Funder
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Key Research and Development Project of Jiangsu Province of China
Subject
General Materials Science,Metals and Alloys
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献