Decreased Placental FPR2 in Early Pregnancies That Later Developed Small-For-Gestation Age: A Potential Role of FPR2 in the Regulation of Epithelial-Mesenchymal Transition

Author:

Murthi PadmaORCID,Rajaraman GayathriORCID,Erwich Jan Jaap H.M.,Dimitriadis Evdokia

Abstract

We reported earlier that an anti-inflammatory small peptide receptor-formyl peptide receptor-2 (FPR2) was significantly decreased in placentas from third trimester pregnancies complicated with fetal growth restriction (FGR), compared to placentas from uncomplicated control pregnancies, suggesting FPR2 may play a role in the development of FGR. The aim of this study is to investigate whether the actions of FPR2 alters placental growth process in humans. Accordingly, using small-for-gestation age (SGA) as a proxy for FGR, we hypothesize that FPR2 expression is decreased in first-trimester placentas of women who later manifest FGR, and contributes to aberrant trophoblast function and the development of FGR. Chorionic villus sampling (CVS) tissues were collected at 10–12 weeks gestation in 70 patients with singleton fetuses; surplus tissue was used. Real-time PCR and immunoassays were performed to quantitate FPR2 gene and protein expression. Silencing of FPR2 was performed in two independent, trophoblast-derived cell lines, HTR-8/SVneo and JEG-3 to investigate the functional consequences of FPR2 gene downregulation. FPR2 mRNA relative to 18S rRNA was significantly decreased in placentae from SGA-pregnancies (n = 28) compared with controls (n = 52) (p < 0.0001). Placental FPR2 protein was significantly decreased in SGA compared with control (n = 10 in each group, p < 0.05). Proliferative, migratory and invasive potential of the human placental-derived cell lines, HTR-8/SVneo and JEG-3 were significantly reduced in siFPR2 treated cells compared with siCONT control groups. Down-stream signaling molecules, STAT5B and SOCS3 were identified as target genes of FPR2 action in the trophoblast-derived cell lines and in SGA and control chorionic villous tissues. FPR2 is a novel regulator of key molecular pathways and functions in placental development, and its decreased expression in women destined to develop FGR reinforces a placental origin of SGA/FGR, and that it contributes to causing the development of SGA/FGR.

Publisher

MDPI AG

Subject

General Medicine

Reference33 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3