Differences in the Response to DNA Double-Strand Breaks between Rod Photoreceptors of Rodents, Pigs, and Humans

Author:

Frohns Florian,Frohns Antonia,Kramer Johanna,Meurer Katharina,Rohrer-Bley CarlaORCID,Solovei IrinaORCID,Hicks David,Layer Paul G.,Löbrich Markus

Abstract

Genome editing (GE) represents a powerful approach to fight inherited blinding diseases in which the underlying mutations cause the degeneration of the light sensing photoreceptor cells of the retina. Successful GE requires the efficient repair of DNA double-stranded breaks (DSBs) generated during the treatment. Rod photoreceptors of adult mice have a highly specialized chromatin organization, do not efficiently express a variety of DSB response genes and repair DSBs very inefficiently. The DSB repair efficiency in rods of other species including humans is unknown. Here, we used ionizing radiation to analyze the DSB response in rods of various nocturnal and diurnal species, including genetically modified mice, pigs, and humans. We show that the inefficient repair of DSBs in adult mouse rods does not result from their specialized chromatin organization. Instead, the DSB repair efficiency in rods correlates with the level of Kruppel-associated protein-1 (KAP1) expression and its ataxia-telangiectasia mutated (ATM)-dependent phosphorylation. Strikingly, we detected robust KAP1 expression and phosphorylation only in human rods but not in rods of other diurnal species including pigs. Hence, our study provides important information about the uniqueness of the DSB response in human rods which needs to be considered when choosing model systems for the development of GE strategies.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3