Lessons Learned from Topic Modeling Analysis of COVID-19 News to Enrich Statistics Education in Korea

Author:

Kang Seokmin,Kim SungyeunORCID

Abstract

This study aimed to investigate how mass media in Korea dealt with various issues arising from COVID-19 and the implications of this on statistics education in South Korea during the recent pandemic. We extracted news articles with the keywords “Corona” and “Statistics” from 18 February to 20 May 2020. We employed word frequency analysis, topic modeling, semantic network analysis, hierarchical clustering, and simple linear regression analysis. The main results of this study are as follows. First, the topic modeling analysis revealed four topics, namely “macroeconomy”, “domestic outbreak”, “international outbreak”, and “real estate and stocks”. Second, a simple linear regression analysis displayed two rising topics, “macroeconomy” and “real estate and stocks” and two falling topics, “domestic outbreak” and “international outbreak” regarding the statistics related to COVID-19 as time passed. Based on these findings, we suggest that the high school mathematics curriculum of Korea should be revised to use real-life context to enable integrated education, social justice for statistics education, and simple linear regression analysis.

Funder

Incheon National University Research Concentration Professors Grant in 2020

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference70 articles.

1. Schools, Skills, and Learning: The Impact of COVID-19 on Educationhttps://voxeu.org/article/impact-covid-19-education

2. COVID-19 Changes Education: Hope the Knowledge of Cyber Universities in Korea be Utilizedhttps://news.unn.net/news/articleView.html?idxno=228219

3. The Value of Mathematics from COVID-19http://www.busan.com/view/busan/view.php?code=2020042818574048312

4. A Cognitive Interpretation of Data Analysis

5. Statistical learning as an individual ability: Theoretical perspectives and empirical evidence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3