Isolation of Efficient Metal-Binding Bacteria from Boreal Peat Soils and Development of Microbial Biosorbents for Improved Nickel Scavenging

Author:

Virpiranta HannaORCID,Banasik Michal,Taskila Sanna,Leiviskä Tiina,Halttu Maiju,Sotaniemi Ville-Hermanni,Tanskanen Juha

Abstract

Boreal peatlands with low iron availability are a potential, but rarely studied, source for the isolation of bacteria for applications in metal sorption. The present research focused on the isolation and identification of Actinobacteria from northern Finland, which can produce siderophores for metal capture. The 16S rDNA analysis showed that isolated strains belonged to Firmicutes (Bacillus sp.) and Actinobacteria (Microbacterium sp.). The culture most efficiently producing siderophores in the widest array of the media was identified as Microbacterium sp. The most appropriate media for siderophore production by the Microbacterium strain were those prepared with glucose supplemented with asparagine or glutamic acid, and those prepared with glycerol or fructose supplemented with glutamic acid. The microorganism obtained and its siderophores were used to develop Sphagnum moss-based hybrid biosorbents. It was showed that the hybrid sorbent could bind nickel ions and that the nickel removal was enhanced by the presence of siderophores. Bacterial cells did not have a significant effect on sorption efficiency compared to the use of siderophores alone. The microbial biosorbent could be applied in the final effluent treatment stage for wastewater with low metal concentrations.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference52 articles.

1. Chemistry and biology of siderophores

2. Iron Transport in Microbes, Plants, and Animals;Neilands,1987

3. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction

4. Synthesis of siderophores by plant-associated metallotolerant bacteria under exposure to Cd 2+

5. All the World’s Metals and Minerals in One Visualization;LePan,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3