Abstract
In this paper, the theoretical lower-bound on the success probability of blind reconstruction of Bose–Chaudhuri–Hocquenghem (BCH) codes is derived. In particular, the blind reconstruction method of BCH codes based on the consecutive roots of generator polynomials is mainly analyzed because this method shows the best blind reconstruction performance. In order to derive a performance lower-bound, the theoretical analysis of BCH codes on the aspects of blind reconstruction is performed. Furthermore, the analysis results can be applied not only to the binary BCH codes but also to the non-binary BCH codes including Reed–Solomon (RS) codes. By comparing the derived lower-bound with the simulation results, it is confirmed that the success probability of the blind reconstruction of BCH codes based on the consecutive roots of generator polynomials is well bounded by the proposed lower-bound.
Subject
General Physics and Astronomy
Reference20 articles.
1. Error control coding for digital communication systems In Error Control Systems for Digital Communication and Storage;Wicker,1995
2. Detection and recognition of a binary linear code
3. Fast Blind Recognition of Channel Codes
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning and Data Randomness based Blind Recognition of Channel Codes;2022 IEEE Smartworld, Ubiquitous Intelligence & Computing, Scalable Computing & Communications, Digital Twin, Privacy Computing, Metaverse, Autonomous & Trusted Vehicles (SmartWorld/UIC/ScalCom/DigitalTwin/PriComp/Meta);2022-12