Physiological and Biochemical Properties of Cotton Seedlings in Response to Cu2+ Stress

Author:

Zhou Hao1,Zhou Ke-Hai2,Zhao Gang1,Wang Pei-Pei1,Yang Dai-Gang2,Ma Xiong-Feng2,Gao Jun-Shan1

Affiliation:

1. School of Life Sciences, Anhui Agricultural University, Hefei 230036, China

2. Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang 455000, China

Abstract

Copper(II) (Cu2+) is essential for plant growth and development. However, high concentrations are extremely toxic to plants. We investigated the tolerance mechanism of cotton under Cu2+ stress in a hybrid cotton variety (Zhongmian 63) and two parent lines with different Cu2+ concentrations (0, 0.2, 50, and 100 μM). The stem height, root length, and leaf area of cotton seedlings had decreased growth rates in response to increasing Cu2+ concentrations. Increasing Cu2+ concentration promoted Cu2+ accumulation in all three cotton genotypes’ roots, stems, and leaves. However, compared with the parent lines, the roots of Zhongmian 63 were richer in Cu2+ and had the least amount of Cu2+ transported to the shoots. Moreover, excess Cu2+ also induced changes in cellular redox homeostasis, causing accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Conversely, antioxidant enzyme activity increased, while photosynthetic pigment content decreased. Our findings indicated that the hybrid cotton variety fared well under Cu2+ stress. This creates a theoretical foundation for the further analysis of the molecular mechanism of cotton resistance to copper and suggests the potential of the large-scale planting of Zhongmian 63 in copper-contaminated soils.

Funder

National Natural Science Foundation of China

State Key Laboratory of Cotton Biology Open Fund

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

Reference70 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3