Abstract
In high-speed magnetic railways, it is necessary to create the forces that lift the train. This effect is achieved by using active (EMS) or passive (EDS) magnetic systems. In a passive system, suspension systems with permanent magnets arranged in a Halbach array can be used. In this paper, an original Halbach array with various alternately arranged horizontally and vertically magnetized magnets is proposed. Correctly selected geometry allows us to obtain higher values of levitation forces and lower braking forces in relation to a system with identical horizontally and vertically magnetized elements. The effect of such a shape of the magnetic arrangement is the reduction of instantaneous power consumption while traveling due to the occurrence of lower braking forces. In order to perform a comparative analysis of the various geometries of the Halbach array, a simulation model was developed in the ANSYS Maxwell program. The performed calculations made it possible to determine the optimal dimensions of horizontally and vertically magnetized elements. The results of calculations of instantaneous power savings for various cruising speeds are also included.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献