Reliability-Oriented Design of a Solar-PV Deployments

Author:

Kut PawełORCID,Pietrucha-Urbanik KatarzynaORCID,Tchórzewska-Cieślak BarbaraORCID

Abstract

Increasing restrictions on the emission of greenhouse gases by the standards and the European Union’s policy aims at increasing the share of renewable energy sources in the energy mix of the Member States. Subsequently, we observe a rapid increase in the installed capacity of the renewable energy sources. Renewable energy sources are currently the fastest growing sectors of energy generation, specifically the photovoltaic sector. In 2005, the total installed capacity in photovoltaic installations in the European Union was about 2.17 GW, while in 2019 it was already over 130 GW. Currently, due to many forms of incentive governmental measures the construction of photovoltaic installations is rapidly increasing with installations mounted on private houses and buildings. The article presents selected issues concerning the failure modes of photovoltaic installations and a comparative assessment of the estimated and the real measured electrical production of an operational photovoltaic installation. The Solar-PV power plant design approach proposed in the paper considers the failure modes to enhance the plant’s reliability.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries

2. The Importance of Renewable Energy Sources in Poland’s Energy Mix

3. Impacts of +2 °C global warming on electricity demand in Europe

4. 2020 Climate & Energy Packagehttps://ec.europa.eu/clima/eu-action/climate-strategies-targets/2020-climate-energy-package_en

5. Climate Actionhttps://Ec.Europa.Eu/Clima/Policies/Strategies/2020_en

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3