Injectable Pectin–Alginate Hydrogels for Improving Vascularization and Adipogenesis of Human Fat Graft

Author:

Janarthanan Ramu1,Jayakumar Rangasamy2ORCID,Iyer Subramania1

Affiliation:

1. Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India

2. Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India

Abstract

Autologous fat grafting (AFG) is the most prevailing tool for soft tissue regeneration in clinics, although efficiency is limited to unpredictable volume resorption due to poor vascularization and eventual necrosis. This study sought to improve the AFG efficiency using a hydrogel as a carrier for human fat graft (F) with and without platelet-rich plasma (PRP). PRP is clinically well known for the local release of several endogenous growth factors and has been in clinical use already. A human-fat-graft-encapsulated pectin–alginate hydrogel (FG) was developed and characterized. PRP was added to F to develop a human fat graft with PRP (FP). FP was admixed with a pectin–alginate hydrogel to develop FGP. FG and FGP showed the smooth injectable, elastic, and shear-thinning properties. FG and FGP groups showed enhanced cell viability and proliferation compared to the control F in vitro. We also investigated the in vivo angiogenesis and neo-adipogenesis ability of F, FG, FGP, and FP in nude mice after subcutaneous injection. After 2 and 4 weeks, an MRI of the mice was conducted, followed by graft explantation. The explanted grafts were also assessed histologically and with immunohistochemistry (IHC) studies. MRI and histology results revealed better vascularity of the FG and FGP system compared to fat graft alone. Further, the IHC studies, CD 31, and perilipin staining also revealed better vasculature and adipogenesis of FG and FGP systems. These results indicate the enhanced angiogenesis and adipogenesis of FG and FGP. Thus, developed pectin–alginate hydrogel-based fat graft systems FG and FGP replenish the native microenvironment by mediating angiogenesis and adipogenesis, thereby maximizing the clinical outcomes of autologous fat grafting.

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3