Composite Hydrogels of Ultrasound-Assisted-Digested Formic Acid-Decellularized Extracellular Matrix and Sacchachitin Nanofibers Incorporated with Platelet-Rich Plasma for Diabetic Wound Treatment

Author:

Lin Chien-Ju1,Lin Hong-Liang1,You Wen-Chen2,Ho Hsiu-O2,Sheu Ming-Thau2ORCID,Chen Ling-Chun3,Cheng Wei-Jie2ORCID

Affiliation:

1. School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan

2. School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan

3. Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 30015, Taiwan

Abstract

In this study, an ultrasound-assisted digestion method of a formic acid-decellularized extracellular matrix (dECM) of porcine skin was developed and optimized to form UdECM hydrogels for diabetic wound healing. Results demonstrated that ultrasonication improved the extraction rate of collagen from dECM samples, preserved the collagen content of dECM, reduced residual cells, and extracted greater DNA contents. Scanning electron microscope (SEM) analyses were performed, which demonstrated the optimal porosity on the surface and density of the cross-section in the hydrogel structure, which could control the release of growth factors embedded in UdECM hydrogels at desirable rates to boost wound healing. A wound-healing study was conducted with six different composite hydrogels, both empty materials and materials enriched with rat platelet-rich plasma (R-PRP), sacchachitin nanofibers (SCNFs), and TEMPO-oxidized sacchachitin in diabetic rats. The assessment based on scars stained with hematoxylin and eosin (H&E), Masson’s trichrome (MT), and a cluster of differentiation 31 (CD31) staining showed that the UdECM/SC/R-PRP treatment group had the most significant efficacy of promoting healing and even recovery of diabetic wounds to normal tissues. UdECM/R-PRP and UdECM/SCNFs demonstrated better healing rates than UdECM hydrogel scaffolds, which had only recovered 50% resemblance to normal skin. Treatment with both UdECM/TEMPO 050 and UdECM/TEMPO 050/R-PRP hydrogel scaffolds was ranked last, with even poorer efficacy than UdECM hydrogels. In summary, formulated UdECM and SCNF hydrogels loaded with PRP showed synergistic effects of accelerating wound healing and ultimately stimulating the wound to recover as functional tissues. This newly UdECM/SCNF composite hydrogel has promising potential for healing and regenerating diabetic wounds.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Biomedical Engineering,Biomaterials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Active Biomedical Materials and Their Applications;Journal of Functional Biomaterials;2024-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3