Evaluation of Grand Ethiopian Renaissance Dam Lake Using Remote Sensing Data and GIS

Author:

Salama AsemORCID,ElGabry MohamedORCID,El-Qady Gad,Moussa Hesham Hussein

Abstract

Ethiopia began constructing the Grand Ethiopian Renaissance Dam (GERD) in 2011 on the Blue Nile near the borders of Sudan for electricity production. The dam was constructed as a roller-compacted concrete (RCC) gravity-type dam, comprising two power stations, three spillways, and the Saddle Dam. The main dam is expected to be 145 m high and 1780 m long. After filling of the dam, the estimated volume of Nile water to be bounded is about 74 billion m3. The first filling of the dam reservoir started in July 2020. It is crucial to monitor the newly impounded lake and its size for the water security balance for the Nile countries. We used remote sensing techniques and a geographic information system to analyze different satellite images, including multi-looking Sentinel-2, Landsat-9, and Sentinel-1 (SAR), to monitor the changes in the volume of water from 21 July 2020 to 28 August 2022. The volume of Nile water during and after the first, second, and third filling was estimated for the Grand Ethiopian Renaissance Dam (GERD) Reservoir Lake and compared for future hazards and environmental impacts. The proposed monitoring and early warning system of the Nile Basin lakes is essential to act as a confidence-building measure and provide an opportunity for cooperation between the Nile Basin countries.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3