Abstract
Producing ice using adsorption systems can represent a sustainable solution and meet the recent global environmental regulations as they use natural refrigerants and can be driven by solar energy. However, the beds used in these systems still have low thermal and adsorption characteristics. This study investigates numerically the use of an emerging aluminum foamed bed packed with advanced Maxsorb adsorbent in a two-bed adsorption system and reports cases of performance improvements compared to the classical finned-tube based system used to produce ice. A comprehensive 2-D transient pressure distribution model for the two beds was developed and validated. The model considers the temporal and spatial variations of the two beds’ parameters, while the effect of the thermal mass and heat transfer effectiveness of the condenser and evaporator components are imitated at the boundary conditions for bed openings using two zero-dimensional models. The results show the interrelated effects of varying the cycle times from 400 s to 1200 s with 2, 5, and 10 mm foam thicknesses/fin heights on the overall performance of both systems. The Al-foam based system demonstrated the performance superiority at a 2 mm foam thickness with maximum ice production of 49 kgice/kgads in 8 h, an increase of 26.6% over the counterpart finned-tube based system at a 400 s cycle time. The best COP of 0.366 was attained at a 5 mm foam thickness and 1200 s with an increase of 26.7%. The effective uptake of the Al-foam based system was reduced dramatically at a 10 mm foam thickness, which deteriorated the system performance.
Funder
King Abdulaziz City for Science and Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献