Test and Modelling of Solid Oxide Fuel Cell Durability: A Focus on Interconnect Role on Global Degradation

Author:

Spotorno RobertoORCID,Bianchi Fiammetta RitaORCID,Paravidino Daniele,Bosio Barbara,Piccardo PaoloORCID

Abstract

High-temperature fuel cells are a promising technology due to their high energy efficiency and low environmental impacts compared to conventional engines. Nevertheless, they have a limited lifetime which reduces the use to a few application fields. Among them, Solid Oxide Fuel Cells (SOFCs) have had a recent development at the industrial level in two possible configurations: anode- and electrolyte-supported design. Considering the impossibility to experimentally distinguish the effects of every degradation mechanism on global cell performance, each layer should be tested singularly through ex situ tests and then assembled into a virgin cell to evaluate its role on the whole system by in situ tests. However, this procedure results as quite complex, and some further microstructural changes could occur during cell sintering. In order to overcome these constraints, the proposed approach paired ex situ experimental observations on a single element with modelling results on global SOFC. As a case study, CoMnO/Crofer22 APU and CuMnO/AISI 441 interconnect samples were tested, measuring their resistance variation for some hundreds of hours, followed by a detailed post-mortem microstructural analysis. Based on a previously validated local model, SIMFC (SIMulation of Fuel Cells), the durability of commercial anode- and electrolyte-supported cells was simulated, adding specific degradation functions only for the interconnects in order to highlight their influence on SOFC performance.

Funder

European Horizon 2020—Research and Innovation Framework program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3