Hydrogen-Rich Syngas and Biochar Production by Non-Catalytic Valorization of Date Palm Seeds

Author:

Sait Hani Hussain,Hussain Ahmed,Bassyouni MohamedORCID,Ali ImtiazORCID,Kanthasamy Ramesh,Ayodele Bamidele Victor,Elhenawy YasserORCID

Abstract

Pyrolysis has been demonstrated to be a highly effective thermochemical process for converting complex biomaterials into biochar and syngas rich in hydrogen. The pyrolysis of mixed date palm seeds from Saudi Arabia was conducted using a fixed-bed pyrolyzer that was custom made for the purpose. The influence of the pyrolysis temperature (200–1000 °C) on the various physicochemical parameters of the date seed biochar generated through the pyrolysis process and the hydrogen-rich syngas was investigated. Proximate and ultimate analyses indicated a high carbon content in the lignocellulosic constituents such as cellulose, hemicellulose, and lignin. Using energy-dispersive X-ray (EDX) analysis, it was discovered that the elemental composition of biochar changes with the pyrolysis temperature. The date seeds pyrolyzed at 800 °C were found to have the maximum carbon concentration, with 97.99% of the total carbon content. The analysis of the biochar indicated a high concentration of carbon, as well as magnesium and potassium. There was a potential for the production of hydrogen-rich syngas, which increased with the pyrolysis temperature. At 1000 °C, the highest hydrogen and carbon monoxide compositions of 40 mol% and 32 mol%, respectively, were obtained. The kinetic data of the date seed pyrolysis were fitted using linearized model-free methods, such as Friedman, Flynn–Wall–Ozawa (FWO) and Kissinger–Akahira–Sunose (KAS), as well as non-linear methods such as Vyazovkin and advanced Vyazovkin. The activation energies obtained from Friedman, FWO, and KAS varied in the range of 30–75 kJ/mol, 30–65 kJ/mol, and 30–40 kJ/mol, respectively, while those of Vyazovkin and advanced Vyazovkin were found in the range of 25–30 kJ/mol, and 30–70 kJ/mol, respectively. The analysis showed that the FWO and KAS models show smaller variation compared to Friedman.

Funder

King Abdulaziz City for Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3