Abstract
In the past few years, advanced technologies such as floating offshore wind turbines (FOWT) and wave energy converters (WECs) have been developed. As demonstrated by the innovative hybrid platform Poseidon, the feasibility of combining floating wind turbines and wave energy converters has already been explored. Furthermore, diversification of offshore renewable energy technologies reduces power fluctuations and lowers investment costs. This paper focuses on the development of an integrated wind and wave platform and the creation of a numerical model to evaluate the system performance for the Belmullet site. The novel concept consists of the semi-submersible Nautilus platform, integrated with four-point absorbers. A hydro-servo-aero time-domain model, combining WEC-Sim with an in-house wind turbine model, simulated the device motion and estimated the power generated. The performance of the Wave Energy Converters (WECs) was optimised based on their Power Take Off (PTO) damping. Finally, the hybrid concept was compared with the simple FOWT concerning the energy produced, Levelized Cost of Energy (LCOE) and hydrodynamic stability. The hybrid configuration proved to be a promising solution with 10% lower LCOE and improved hydrodynamic stability evaluated in terms of nacelle acceleration and platform pitch motion. These results show that wind and wave could be one of the best solutions for the future of the marine energy sector and the energy transition.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference85 articles.
1. Marine Social Science for the Peopled Seas
2. Innovation Outlook: Ocean Energy Technologies,2020
3. Oceans of Energy—European Ocean Energy Roadmap 2010–2050
https://www.icoe-conference.com/publication/oceans_of_energy_european_ocean_energy_roadmap_2010_2050/
4. EU Biodiverity Strategy for 2030,2020
5. Neutral future,2020
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献