An Impedance Matching Solution to Increase the Harvested Power and Efficiency of Nonlinear Piezoelectric Energy Harvesters

Author:

Bonnin MicheleORCID,Traversa Fabio L.ORCID,Bonani FabrizioORCID

Abstract

Circuit theory and nonlinear dynamics are instrumental to design efficient energy harvesters for ambient mechanical vibrations. In this work, we show that an impedance matching networks can be designed that maximizes the harvested power, and improves the power efficiency. The proposed matching network achieves impedance matching at a single frequency, that can be chosen at will by the designer, and does not need to coincide with the resonant frequency of the harvester. Moreover, the matching network also increases the harvested power over a wide frequency bandwidth. According to our numerical simulations, the matching network increases the maximum harvested power by a factor greater than 3, and the power harvested over the whole frequency spectrum by a factor of 6. The frequency bandwidth can be further extended considering nonlinear energy harvesters. Even using the matching network designed for the linear case, performance is significantly nonetheless improved for the nonlinear harvester.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A stochastic averaging mathematical framework for design and optimization of nonlinear energy harvesters with several electrical DOFs;Communications in Nonlinear Science and Numerical Simulation;2024-12

2. Model order reduction and stochastic averaging for the analysis and design of micro-electro-mechanical systems;Nonlinear Dynamics;2024-01-23

3. Nonlinear Stochastic Dynamics of an Energy Harvester with Matched Load;Lecture Notes in Mechanical Engineering;2024

4. State-of-the-Art;SpringerBriefs in Applied Sciences and Technology;2024

5. SPICE modelling and analysis of hybrid energy harvester combiner topologies;International Journal of Energy Applications and Technologies;2023-12-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3