Abstract
Energy storage systems is expected to be utilized to cover the increased electrification of energy demands and to alleviate the electrical energy production from intermittent energy sources such as solar and wind. Aggregated and distributed battery energy storage systems may improve electricity grids operability and security by providing smart energy management options and efficient resources allocation. In this paper, battery storage at the secondary distribution level is explored. The investigation is based on the end-user energy demand behavior. As such, the electrical energy consumption patterns are measured and analyzed in a residential area. Measurements were collected and analyzed in order to record the customers’ behaviors aiming to reveal their differences and similarities. Following this, aggregated and distributed battery energy storage systems are computed based on the features of the measured electrical power consumption patterns aiming to estimate the factors that could potentially incentivize the installation of a battery system either as aggregated at the low voltage transformer side or as distributed system at the load side. The parameters that affect the economic viability of the system are qualitatively evaluated with regard to the profitability of the system.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Reference34 articles.
1. A critical review of the integration of renewable energy sources with various technologies
2. The European parliament and the council of the European Union, UE Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sourceshttps://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=fr
3. Electric Vehicle Penetration in Distribution Network: A Swedish Case Study
4. Investigation of the Impact of Large-Scale Integration of Electric Vehicles for a Swedish Distribution Network