Optimal Scheduling of Energy Storage System Considering Life-Cycle Degradation Cost Using Reinforcement Learning

Author:

Lee Wonpoong,Chae Myeongseok,Won DongjunORCID

Abstract

Recently, due to the ever-increasing global warming effect, the proportion of renewable energy sources in the electric power industry has increased significantly. With the increase in distributed power sources with adjustable outputs, such as energy storage systems (ESSs), it is necessary to define ESS usage standards for an adaptive power transaction plan. However, the life-cycle cost is generally defined in a quadratic formula without considering various factors. In this study, the life-cycle cost for an ESS is defined in detail based on a life assessment model and used for scheduling. The life-cycle cost is affected by four factors: temperature, average state-of-charge (SOC), depth-of-discharge (DOD), and time. In the case of the DOD stress model, the life-cycle cost is expressed as a function of the cycle depth, whose exact value can be determined based on fatigue analysis techniques such as the Rainflow counting algorithm. The optimal scheduling of the ESS is constructed considering the life-cycle cost using a tool based on reinforcement learning. Since the life assessment cannot apply the analytical technique due to the temperature characteristics and time-dependent characteristics of the ESS SOC, the reinforcement learning that derives optimal scheduling is used. The results show that the SOC curve changes with respect to weight. As the weight of life-cycle cost increases, the ESS output and charge/discharge frequency decrease.

Funder

Inha University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference29 articles.

1. Distributed Power New Technology Development Trend and Small Power Brokerage Market Promotion Status,2020

2. Use of Multiple Linear Regression Techniques to Predict Energy Storage Systems’ Total Capital Costs and Life Cycle Costs;Hernandez,2020

3. A Life Cycle-Cost Analysis of Li-ion and Lead-Acid BESSs and Their Actively Hybridized ESSs With Supercapacitors for Islanded Microgrid Applications

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3