A Novel Approach to Predict Transformer Temperature Rise under Harmonic Load Current Conditions

Author:

Thango Bonginkosi A.ORCID,Bokoro Pitshou N.ORCID

Abstract

In South Africa, distribution transformers (DTs) facilitating solar photovoltaic applications represent the highest percentage of total ownership cost investment for independent power producers (IPPs). One of the most indispensable variables that regulate DTs’ operational life span is the hotspot temperature. The prevailing analytical approaches designated to guesstimate the transformer thermal necessities were fathered in accordance with the conservative foundation that an electrical transformer is prone to uniform mean daily and monthly peak loads. In order to appropriately puzzle out the transformer thermal necessities, the formation of a more detailed thermal model that operates with real-time contorted cyclic loading, ambient air temperature, and the intrinsic characteristics of the transformer in-service losses is required. In the current work, various regression models are proposed for the modification of the top-oil formula and the hotspot temperature formula in the IEEE loading guide standard to replicate the real harmonic load currents (HLCs) and the fluctuating ambient air temperature (AT) on an hourly and daily basis. The proposed thermal model is examined in various transformers case studies, in which the computed outcomes produce an error margin of no more than 3% throughout all test cases when compared to the measured data.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference23 articles.

1. Loading Guide for Oil-Immersed Power Transformers. IEC Std 60354; 1993https://standards.iteh.ai/catalog/standards/iec/896cd844-3333-4dcd-82e5-c42cf4042d86/iec-60354-ed-2-0

2. Loading Guide for Oil-Immersed Power Transformers. IEC Std 60076-7; 2005-12https://webstore.iec.ch/preview/info_iec60076-7%7Bed1.0%7Den_d.pdf

3. A fundamental approach to transformer thermal modeling. I. Theory and equivalent circuit

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Real-Time Early Warning Method of Distribution Transformer Load Considering Meteorological Factor Data;Journal of Circuits, Systems and Computers;2024-03-02

2. Intelligent Switching Line Device for Temperature Rise Test of Power Distribution Equipment;2023 IEEE Sustainable Power and Energy Conference (iSPEC);2023-11-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3