A Synergetic Analysis of Sentinel-1 and -2 for Mapping Historical Landslides Using Object-Oriented Random Forest in the Hyrcanian Forests

Author:

Shirvani Zeinab,Abdi Omid,Buchroithner ManfredORCID

Abstract

Despite increasing efforts in the mapping of landslides using Sentinel-1 and -2, research on their combination for discerning historical landslides in forest areas is still lacking, particularly using object-oriented machine learning approaches. This study was accomplished to test the efficiency of Sentinel-derived features and digital elevation model (DEM) derivatives for mapping old and new landslides, using object-oriented random forest. Two forest subsets were selected including a protected and non-protected forest in northeast Iran. Landslide samples were obtained from CORONA images and aerial photos (old landslides), and also field mensuration and high-resolution images (new landslides). Segment objects were generated from a set combination of Sentinel-1A, Sentinel-2A, and some topographic-derived indices using multiresolution segmentation algorithm. Various object features were derived from the main channels of Sentinel images and DEM derivatives in the seven main groups, including spectral layers, spectral indices, geometric, contextual, textural, topographic, and hydrologic features. A single database was created, including landslide samples and Sentinel- and DEM-derived object features. Roughly 20% of landslide-affected objects and non-landslide-affected objects were randomly selected as an input for training the random forest classifier. Two-thirds of the selected objects were assigned as learning samples for classification, and the remainder were used for testing the accuracy of landslide and non-landslide classification. Results indicated that: (1) The sensitivity of mapping historical landslides was 86.6% and 80.3% in the protected and non-protected forests, respectively; (2) the object features of Sentinel-2A and DEM obtained the highest importance with the total scores of 55.6% and 32%, respectively in the protected forests, and 65.4% and 21% respectively in the non-protected forests; (3) the features derived from the combination of Sentinel-1 and -2A demonstrated a total importance of 10% for mapping new landslides; and (4) textural features were obtained in approximately two-thirds of the total scores for mapping new landslides, however a combination of topographic, spectral, textural, and contextual features were the effective predictors for mapping old landslides. This research proposes applying a synergetic analysis of Sentinel- and DEM-derived features for mapping historical landslides; however, there are no uniformly pre-defined influential variables for mapping historical landslides in different forest areas.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3