CloudFCN: Accurate and Robust Cloud Detection for Satellite Imagery with Deep Learning

Author:

Francis Alistair,Sidiropoulos Panagiotis,Muller Jan-Peter

Abstract

Cloud masking is of central importance to the Earth Observation community. This paper deals with the problem of detecting clouds in visible and multispectral imagery from high-resolution satellite cameras. Recently, Machine Learning has offered promising solutions to the problem of cloud masking, allowing for more flexibility than traditional thresholding techniques, which are restricted to instruments with the requisite spectral bands. However, few studies use multi-scale features (as in, a combination of pixel-level and spatial) whilst also offering compelling experimental evidence for real-world performance. Therefore, we introduce CloudFCN, based on a Fully Convolutional Network architecture, known as U-net, which has become a standard Deep Learning approach to image segmentation. It fuses the shallowest and deepest layers of the network, thus routing low-level visible content to its deepest layers. We offer an extensive range of experiments on this, including data from two high-resolution sensors—Carbonite-2 and Landsat 8—and several complementary tests. Owing to a variety of performance-enhancing design choices and training techniques, it exhibits state-of-the-art performance where comparable to other methods, high speed, and robustness to many different terrains and sensor types.

Funder

UK Space Agency

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3