Estimation of Anthocyanins in Leaves of Trees with Apple Mosaic Disease Based on Hyperspectral Data

Author:

Zhang Zijuan1,Jiang Danyao1,Chang Qingrui1,Zheng Zhikang1,Fu Xintong1,Li Kai1,Mo Haiyang1

Affiliation:

1. College of Nature Resources and Environment, Northwest A&F University, Yangling 712100, China

Abstract

Anthocyanins are severity indicators for apple mosaic disease and can be used to monitor tree health. However, most of the current studies have focused on healthy leaves, and few studies have estimated the anthocyanin content in diseased leaves. In this study, we obtained the hyperspectral data of apple leaves with mosaic disease, analyzed the spectral characteristics of leaves with different degrees of Mosaic disease, constructed and screened the spectral index sensitive to anthocyanin content, and improved the estimation model. To improve the conciseness of the model, we integrated Variable Importance in Projection (VIP), Partial Least Squares Regression (PLSR), and Akaike Information Criterion (AIC) to select the optimal PLSR model and its independent variables. Sparrow Search Algorithm-Random Forest (SSA-RF) was used to improve accuracy. Results showed the following: (1) anthocyanin content increased gradually with the aggravation of disease. The reflectance of the blade spectrum in the visible band increased, the red edge moved to short wave, and the phenomenon of “blue shift of spectrum” occurred. (2) The VIP-PLSR-AIC selected 17 independent variables from 21 spectral indices. (3) Variables were used to construct PLSR, Back Propagation (BP), Support Vector Machine (SVM), Random Forest (RF), and SSA-RF to estimate anthocyanin content. Results showed the estimation accuracy and stability of the SSA-RF model were better than other models. The model set determination coefficient (R2) was up to 0.955, which is 0.047 higher than that of the RF model and 0.138 higher than that of the SVM model with the lowest accuracy. The model was constructed at the leaf scale and can provide a reference for other scale studies, including a theoretical basis for large-area, high-efficiency, high-precision anthocyanin estimation and monitoring of apple mosaics using remote sensing technology.

Funder

National High Technology Research and Development Program of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3