A Novel End-to-End Unsupervised Change Detection Method with Self-Adaptive Superpixel Segmentation for SAR Images

Author:

Ji Linxia1ORCID,Zhao Jinqi2,Zhao Zheng1

Affiliation:

1. Institute of Photogrammetry and Remote Sensing, Chinese Academy of Surveying & Mapping (CASM), Beijing 100830, China

2. The School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China

Abstract

Change detection (CD) methods using synthetic aperture radar (SAR) data have received significant attention in the field of remote sensing Earth observation, which mainly involves knowledge-driven and data-driven approaches. Knowledge-driven CD methods are based on the physical theoretical models with strong interpretability, but they lack the robust features of being deeply mined. In contrast, data-driven CD methods can extract deep features, but require abundant training samples, which are difficult to obtain for SAR data. To address these limitations, an end-to-end unsupervised CD network based on self-adaptive superpixel segmentation is proposed. Firstly, reliable training samples were selected using an unsupervised pre-task. Then, the superpixel generation and Siamese CD network were integrated into the unified framework to train them end-to-end until the global optimal parameters were obtained. Moreover, the backpropagation of the joint loss function promoted the adaptive adjustment of the superpixel. Finally, the binary change map was obtained. Several public SAR CD datasets were used to verify the effectiveness of the proposed method. The transfer learning experiment was implemented to further explore the ability to detect the changes and generalization performance of our network. The experimental results demonstrate that our proposed method achieved the most competitive results, outperforming seven other advanced deep-learning-based CD methods. Specifically, our method achieved the highest accuracy in OA, F1-score, and Kappa, and also showed superiority in suppressing speckle noise, refining change boundaries, and improving detection accuracy in a small area change.

Funder

National Key R&D Program of China

Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Jiangsu Provincial Double-Innovation Doctor Program

CSAM FUNDING

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3