Unsupervised Change Detection for VHR Remote Sensing Images Based on Temporal-Spatial-Structural Graphs

Author:

Wu Junzheng12,Ni Weiping1,Bian Hui1,Cheng Kenan1,Liu Qiang1,Kong Xue1,Li Biao2

Affiliation:

1. Northwest Institute of Nuclear Technology, Xi’an 710024, China

2. College of Electronic Science, National University of Defense Technology, Changsha 410073, China

Abstract

With the aim of automatically extracting fine change information from ground objects, change detection (CD) for very high resolution (VHR) remote sensing images is extremely essential in various applications. However, the increase in spatial resolution, more complicated interactive relationships of ground objects, more evident diversity of spectra, and more severe speckle noise make accurately identifying relevant changes more challenging. To address these issues, an unsupervised temporal-spatial-structural graph is proposed for CD tasks. Treating each superpixel as a node of graph, the structural information of ground objects presented by the parent–offspring relationships with coarse and fine segmented scales is introduced to define the temporal-structural neighborhood, which is then incorporated with the spatial neighborhood to form the temporal-spatial-structural neighborhood. The graphs defined on such neighborhoods extend the interactive range among nodes from two dimensions to three dimensions, which can more perfectly exploit the structural and contextual information of bi-temporal images. Subsequently, a metric function is designed according to the spectral and structural similarity between graphs to measure the level of changes, which is more reasonable due to the comprehensive utilization of temporal-spatial-structural information. The experimental results on both VHR optical and SAR images demonstrate the superiority and effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UCDFormer: Unsupervised Change Detection Using a Transformer-Driven Image Translation;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3